Expand each of the following, using suitable identities : $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$
$\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}=\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+(1)^{2}+2\left(\frac{1}{4} a\right)\left(-\frac{1}{2} b\right)+2\left(-\frac{1}{2} b\right)(1)+2(1)\left(\frac{1}{4} a\right)$
$\quad=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1+\left[-\frac{1}{4} a b\right]+[-b]+\left[\frac{1}{2} a\right]$
$\quad=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a$
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$
Find the degree of each of the polynomials given below : $2$
Use suitable identities to find the products : $(3-2 x)(3+2 x)$
Factorise : $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$
Factorise : $12 x^{2}-7 x+1$